3.2 \(\int x \sin (a+b \log (c x^n)) \, dx\)

Optimal. Leaf size=57 \[ \frac{2 x^2 \sin \left (a+b \log \left (c x^n\right )\right )}{b^2 n^2+4}-\frac{b n x^2 \cos \left (a+b \log \left (c x^n\right )\right )}{b^2 n^2+4} \]

[Out]

-((b*n*x^2*Cos[a + b*Log[c*x^n]])/(4 + b^2*n^2)) + (2*x^2*Sin[a + b*Log[c*x^n]])/(4 + b^2*n^2)

________________________________________________________________________________________

Rubi [A]  time = 0.0126992, antiderivative size = 57, normalized size of antiderivative = 1., number of steps used = 1, number of rules used = 1, integrand size = 13, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.077, Rules used = {4485} \[ \frac{2 x^2 \sin \left (a+b \log \left (c x^n\right )\right )}{b^2 n^2+4}-\frac{b n x^2 \cos \left (a+b \log \left (c x^n\right )\right )}{b^2 n^2+4} \]

Antiderivative was successfully verified.

[In]

Int[x*Sin[a + b*Log[c*x^n]],x]

[Out]

-((b*n*x^2*Cos[a + b*Log[c*x^n]])/(4 + b^2*n^2)) + (2*x^2*Sin[a + b*Log[c*x^n]])/(4 + b^2*n^2)

Rule 4485

Int[((e_.)*(x_))^(m_.)*Sin[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(d_.)], x_Symbol] :> Simp[((m + 1)*(e*x)^(m +
 1)*Sin[d*(a + b*Log[c*x^n])])/(b^2*d^2*e*n^2 + e*(m + 1)^2), x] - Simp[(b*d*n*(e*x)^(m + 1)*Cos[d*(a + b*Log[
c*x^n])])/(b^2*d^2*e*n^2 + e*(m + 1)^2), x] /; FreeQ[{a, b, c, d, e, m, n}, x] && NeQ[b^2*d^2*n^2 + (m + 1)^2,
 0]

Rubi steps

\begin{align*} \int x \sin \left (a+b \log \left (c x^n\right )\right ) \, dx &=-\frac{b n x^2 \cos \left (a+b \log \left (c x^n\right )\right )}{4+b^2 n^2}+\frac{2 x^2 \sin \left (a+b \log \left (c x^n\right )\right )}{4+b^2 n^2}\\ \end{align*}

Mathematica [A]  time = 0.0587051, size = 44, normalized size = 0.77 \[ -\frac{x^2 \left (b n \cos \left (a+b \log \left (c x^n\right )\right )-2 \sin \left (a+b \log \left (c x^n\right )\right )\right )}{b^2 n^2+4} \]

Antiderivative was successfully verified.

[In]

Integrate[x*Sin[a + b*Log[c*x^n]],x]

[Out]

-((x^2*(b*n*Cos[a + b*Log[c*x^n]] - 2*Sin[a + b*Log[c*x^n]]))/(4 + b^2*n^2))

________________________________________________________________________________________

Maple [F]  time = 0.033, size = 0, normalized size = 0. \begin{align*} \int x\sin \left ( a+b\ln \left ( c{x}^{n} \right ) \right ) \, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(x*sin(a+b*ln(c*x^n)),x)

[Out]

int(x*sin(a+b*ln(c*x^n)),x)

________________________________________________________________________________________

Maxima [B]  time = 1.23481, size = 296, normalized size = 5.19 \begin{align*} -\frac{{\left ({\left (b \cos \left (2 \, b \log \left (c\right )\right ) \cos \left (b \log \left (c\right )\right ) + b \sin \left (2 \, b \log \left (c\right )\right ) \sin \left (b \log \left (c\right )\right ) + b \cos \left (b \log \left (c\right )\right )\right )} n - 2 \, \cos \left (b \log \left (c\right )\right ) \sin \left (2 \, b \log \left (c\right )\right ) + 2 \, \cos \left (2 \, b \log \left (c\right )\right ) \sin \left (b \log \left (c\right )\right ) - 2 \, \sin \left (b \log \left (c\right )\right )\right )} x^{2} \cos \left (b \log \left (x^{n}\right ) + a\right ) -{\left ({\left (b \cos \left (b \log \left (c\right )\right ) \sin \left (2 \, b \log \left (c\right )\right ) - b \cos \left (2 \, b \log \left (c\right )\right ) \sin \left (b \log \left (c\right )\right ) + b \sin \left (b \log \left (c\right )\right )\right )} n + 2 \, \cos \left (2 \, b \log \left (c\right )\right ) \cos \left (b \log \left (c\right )\right ) + 2 \, \sin \left (2 \, b \log \left (c\right )\right ) \sin \left (b \log \left (c\right )\right ) + 2 \, \cos \left (b \log \left (c\right )\right )\right )} x^{2} \sin \left (b \log \left (x^{n}\right ) + a\right )}{2 \,{\left ({\left (b^{2} \cos \left (b \log \left (c\right )\right )^{2} + b^{2} \sin \left (b \log \left (c\right )\right )^{2}\right )} n^{2} + 4 \, \cos \left (b \log \left (c\right )\right )^{2} + 4 \, \sin \left (b \log \left (c\right )\right )^{2}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*sin(a+b*log(c*x^n)),x, algorithm="maxima")

[Out]

-1/2*(((b*cos(2*b*log(c))*cos(b*log(c)) + b*sin(2*b*log(c))*sin(b*log(c)) + b*cos(b*log(c)))*n - 2*cos(b*log(c
))*sin(2*b*log(c)) + 2*cos(2*b*log(c))*sin(b*log(c)) - 2*sin(b*log(c)))*x^2*cos(b*log(x^n) + a) - ((b*cos(b*lo
g(c))*sin(2*b*log(c)) - b*cos(2*b*log(c))*sin(b*log(c)) + b*sin(b*log(c)))*n + 2*cos(2*b*log(c))*cos(b*log(c))
 + 2*sin(2*b*log(c))*sin(b*log(c)) + 2*cos(b*log(c)))*x^2*sin(b*log(x^n) + a))/((b^2*cos(b*log(c))^2 + b^2*sin
(b*log(c))^2)*n^2 + 4*cos(b*log(c))^2 + 4*sin(b*log(c))^2)

________________________________________________________________________________________

Fricas [A]  time = 0.482559, size = 130, normalized size = 2.28 \begin{align*} -\frac{b n x^{2} \cos \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right ) - 2 \, x^{2} \sin \left (b n \log \left (x\right ) + b \log \left (c\right ) + a\right )}{b^{2} n^{2} + 4} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*sin(a+b*log(c*x^n)),x, algorithm="fricas")

[Out]

-(b*n*x^2*cos(b*n*log(x) + b*log(c) + a) - 2*x^2*sin(b*n*log(x) + b*log(c) + a))/(b^2*n^2 + 4)

________________________________________________________________________________________

Sympy [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: TypeError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*sin(a+b*ln(c*x**n)),x)

[Out]

Exception raised: TypeError

________________________________________________________________________________________

Giac [B]  time = 1.26222, size = 1246, normalized size = 21.86 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(x*sin(a+b*log(c*x^n)),x, algorithm="giac")

[Out]

-1/2*(b*n*x^2*e^(1/2*pi*b*n*sgn(x) - 1/2*pi*b*n + 1/2*pi*b*sgn(c) - 1/2*pi*b)*tan(1/2*b*n*log(abs(x)) + 1/2*b*
log(abs(c)))^2*tan(1/2*a)^2 + b*n*x^2*e^(-1/2*pi*b*n*sgn(x) + 1/2*pi*b*n - 1/2*pi*b*sgn(c) + 1/2*pi*b)*tan(1/2
*b*n*log(abs(x)) + 1/2*b*log(abs(c)))^2*tan(1/2*a)^2 - b*n*x^2*e^(1/2*pi*b*n*sgn(x) - 1/2*pi*b*n + 1/2*pi*b*sg
n(c) - 1/2*pi*b)*tan(1/2*b*n*log(abs(x)) + 1/2*b*log(abs(c)))^2 - b*n*x^2*e^(-1/2*pi*b*n*sgn(x) + 1/2*pi*b*n -
 1/2*pi*b*sgn(c) + 1/2*pi*b)*tan(1/2*b*n*log(abs(x)) + 1/2*b*log(abs(c)))^2 - 4*b*n*x^2*e^(1/2*pi*b*n*sgn(x) -
 1/2*pi*b*n + 1/2*pi*b*sgn(c) - 1/2*pi*b)*tan(1/2*b*n*log(abs(x)) + 1/2*b*log(abs(c)))*tan(1/2*a) - 4*b*n*x^2*
e^(-1/2*pi*b*n*sgn(x) + 1/2*pi*b*n - 1/2*pi*b*sgn(c) + 1/2*pi*b)*tan(1/2*b*n*log(abs(x)) + 1/2*b*log(abs(c)))*
tan(1/2*a) - b*n*x^2*e^(1/2*pi*b*n*sgn(x) - 1/2*pi*b*n + 1/2*pi*b*sgn(c) - 1/2*pi*b)*tan(1/2*a)^2 - b*n*x^2*e^
(-1/2*pi*b*n*sgn(x) + 1/2*pi*b*n - 1/2*pi*b*sgn(c) + 1/2*pi*b)*tan(1/2*a)^2 + 4*x^2*e^(1/2*pi*b*n*sgn(x) - 1/2
*pi*b*n + 1/2*pi*b*sgn(c) - 1/2*pi*b)*tan(1/2*b*n*log(abs(x)) + 1/2*b*log(abs(c)))^2*tan(1/2*a) + 4*x^2*e^(-1/
2*pi*b*n*sgn(x) + 1/2*pi*b*n - 1/2*pi*b*sgn(c) + 1/2*pi*b)*tan(1/2*b*n*log(abs(x)) + 1/2*b*log(abs(c)))^2*tan(
1/2*a) + 4*x^2*e^(1/2*pi*b*n*sgn(x) - 1/2*pi*b*n + 1/2*pi*b*sgn(c) - 1/2*pi*b)*tan(1/2*b*n*log(abs(x)) + 1/2*b
*log(abs(c)))*tan(1/2*a)^2 + 4*x^2*e^(-1/2*pi*b*n*sgn(x) + 1/2*pi*b*n - 1/2*pi*b*sgn(c) + 1/2*pi*b)*tan(1/2*b*
n*log(abs(x)) + 1/2*b*log(abs(c)))*tan(1/2*a)^2 + b*n*x^2*e^(1/2*pi*b*n*sgn(x) - 1/2*pi*b*n + 1/2*pi*b*sgn(c)
- 1/2*pi*b) + b*n*x^2*e^(-1/2*pi*b*n*sgn(x) + 1/2*pi*b*n - 1/2*pi*b*sgn(c) + 1/2*pi*b) - 4*x^2*e^(1/2*pi*b*n*s
gn(x) - 1/2*pi*b*n + 1/2*pi*b*sgn(c) - 1/2*pi*b)*tan(1/2*b*n*log(abs(x)) + 1/2*b*log(abs(c))) - 4*x^2*e^(-1/2*
pi*b*n*sgn(x) + 1/2*pi*b*n - 1/2*pi*b*sgn(c) + 1/2*pi*b)*tan(1/2*b*n*log(abs(x)) + 1/2*b*log(abs(c))) - 4*x^2*
e^(1/2*pi*b*n*sgn(x) - 1/2*pi*b*n + 1/2*pi*b*sgn(c) - 1/2*pi*b)*tan(1/2*a) - 4*x^2*e^(-1/2*pi*b*n*sgn(x) + 1/2
*pi*b*n - 1/2*pi*b*sgn(c) + 1/2*pi*b)*tan(1/2*a))/(b^2*n^2*tan(1/2*b*n*log(abs(x)) + 1/2*b*log(abs(c)))^2*tan(
1/2*a)^2 + b^2*n^2*tan(1/2*b*n*log(abs(x)) + 1/2*b*log(abs(c)))^2 + b^2*n^2*tan(1/2*a)^2 + b^2*n^2 + 4*tan(1/2
*b*n*log(abs(x)) + 1/2*b*log(abs(c)))^2*tan(1/2*a)^2 + 4*tan(1/2*b*n*log(abs(x)) + 1/2*b*log(abs(c)))^2 + 4*ta
n(1/2*a)^2 + 4)